

NCC 'GET CONNECTED 2026'

Organization Section: NCC/ BCLA

Poster Abstracts

Monday 9 March 2026, Netherlands, Veldhoven, NH De Koningshof, Baroniezaal

Cooling rate dynamics as a diagnostic indicator for dry eye disease: a comparative thermographic analysis

Parvaneh Najafizadeh, Ehsan Zare Bidaki, Paul Murphy

Affiliation: School of Optometry and Vision Science, University of Waterloo

Purpose: To determine whether ocular surface temperature (OST) cooling rates (CR) differentiate dry eye disease (DED) from non-DED, and to identify CR thresholds to predict DED.

Method: One randomly selected eye from 39 participants (27 females, 12 males; mean \pm SD age, 34.64 \pm 11.48 years) were imaged using ThermOcular's synchronized thermal and visible cameras. Each participant made two complete blinks and then avoided blinking (MBI) while fixating on a target. Participants were divided into two groups: (DED = 14, non-DED = 25). (DED classification: OSDI >13; TBUT <5s). CR (°C/s) for entire cornea region, over time periods 3–8 s after eye opening (CR3–8) and maximum blink interval (CRMFI), were extracted. Mean ambient conditions during testing were 25.1 \pm 1.8°C and 46.2 \pm 5.3%, respectively. Group differences were assessed using Mann-Whitney tests, and diagnostic performance using ROC analysis. Optimal cut-offs were derived from Youden's J index. The study followed the Declaration of Helsinki.

Results: CR was significantly faster in DED eyes (-0.10 \pm 0.04°/s) than non-DED eyes (-0.05 \pm 0.04°/s) across all time periods (p <0.001). Comparisons for time periods CR3–8 found consistent significant differences (p ≤0.0005) and good AUC (0.79 to 0.85). Strongest discrimination occurred for CRMFI (AUC, 0.90; cutoff, -0.05°C/s; sensitivity, 0.85; specificity, 0.92) and CR₅ (AUC, 0.89; cutoff, 0.06°C/s; sensitivity, 1.00; specificity, 0.68). CR correlated negatively with OSDI (r =-0.43 to -0.51; p ≤0.01), and positively with TBUT (r =0.54 to 0.61; p ≤0.004) suggesting that faster CRs were associated with greater symptom severity and reduced tear film stability.

Conclusions: OST CR over entire cornea can distinguish DED from non-DED with high diagnostic performance. CRMFI offered the most clinically useful single parameter, with a DED CR cut-off ≤ 0.05°C/s, with good sensitivity and specificity. The moderate, but strong, relationship between tear stability and CR suggests that thermographic cooling metrics have potential for enhanced DED screening.

This research received funding from: Natural Sciences and Engineering Research Council of Canada; Discovery Horizons
BioHubNet; EQUIP VentureLift Grant