

NCC 'GET CONNECTED 2026'

Organization Section: NCC/ BCLA

Paper Abstracts

Sunday 8 March 2026, Netherlands, Veldhoven, NH De Koningshof, Baroniezaal

Effect of regional variations in corneal surface cooling for dry eye disease diagnosis

Paul Murphy, Parvaneh Najafizadeh, Ehsan Zare Bidaki

Affiliation: School of Optometry and Vision Science, University of Waterloo

Purpose: To compare ocular surface temperature cooling rates (CR) between 6 corneal regions (ROI) and identify the most useful ROI and CR metric to predict dry eye disease (DED).

Method: One randomly selected eye from 39 participants (27 females, 12 males; mean \pm SD age, 34.64 \pm 11.48 years) were imaged using ThermOcular's synchronized thermal and visible cameras. Each participant made two complete blinks and then avoided blinking (MBI) while fixating on a target. Participants were divided into DED (n=14) and non-DED (n=25) groups. (DED classification: OSDI $>$ 13; TBUT $<$ 5s). Cooling rate (CR₅, °C/s) over 5s post-blink period and maximum inter-blink interval (CRM_{BI}) were analysed for six ROI (entire, central, superior, inferior, nasal, temporal). Group differences were evaluated using t-tests, and diagnostic performance using ROC analysis with Youden's index to identify cut-offs. The study adhered to the Declaration of Helsinki.

Results: CR₅ and CRM_{BI} were consistently more negative in DED eyes, indicating faster ocular surface cooling. CR₅: DED (-0.11 \pm 0.04°C/s) versus non-DED (-0.07 \pm 0.05°C/s; p=0.004), and CRM_{BI}: DED (-0.09 \pm 0.04°C/s) versus non-DED (-0.04 \pm 0.03°C/s; p=0.003) across all ROI. All ROI showed significant DED/non-DED differences (p $<$ 0.02), with entire and central ROI showing the largest effects. CR was greatest centrally and temporally, and lowest nasally in both groups. For CR₅, AUCs ranged from 0.85–0.90, with entire (0.90) and temporal (0.89) ROI showing best diagnostic accuracy. For CRM_{BI}, AUCs ranged from 0.84–0.90, with entire ROI performing best (AUC = 0.90, sensitivity = 0.86, specificity = 0.92). Overall, both CR₅ and CRM_{BI} distinguished DED from non-DED eyes (mean AUC = 0.87).

Conclusions: DED shows faster inter-blink CR than non-DED. For all eyes, CR varied by ROI, with Entire Cornea giving the best diagnostic performance between DED and non-DED, for both CRM_{BI} and CR₅. For screening, CRM_{BI} cut-off \leq -0.05°C/s balanced sensitivity and specificity, while CR₅ cut-off \leq -0.06°C/s favoured sensitivity-driven screening.

This research received funding from: Natural Sciences and Engineering Research Council of Canada; Discovery Horizons
BioHubNet; EQUIP VentureLift Grant